Samsung Electronics Unveils Plans for 1.4nm Process Technology and Investment for Production Capacity

2022-10-08 14:58:20 By : Ms. Phoebe Pang

Since 1987 - Covering the Fastest Computers in the World and the People Who Run Them

Since 1987 - Covering the Fastest Computers in the World and the People Who Run Them

SAN JOSE, Calif., Oct. 3, 2022 — Samsung Electronics, a world leader in advanced semiconductor technology, announced today a strengthened business strategy for its Foundry Business with the introduction of cutting-edge technologies at its annual Samsung Foundry Forum event.

With significant market growth in high-performance computing (HPC), artificial intelligence (AI), 5/6G connectivity and automotive applications, demand for advanced semiconductors has increased dramatically, making innovation in semiconductor process technology critical to the business success of foundry customers. To that end, Samsung highlighted its commitment to bringing its most advanced process technology, 1.4-nanometer (nm), for mass production in 2027.

During the event, Samsung also outlined steps its Foundry Business is taking in order to meet customers’ needs, including: △foundry process technology innovation, △process technology optimization for each specific applications, △stable production capabilities, and △customized services for customers.

“The technology development goal down to 1.4nm and foundry platforms specialized for each application, together with stable supply through consistent investment are all part of Samsung’s strategies to secure customers’ trust and support their success,” said Dr. Si-young Choi, president and head of Foundry Business at Samsung Electronics. “Realizing every customer’s innovations with our partners has been at the core of our foundry service.” 

Showcasing Samsung’s Advanced Node Roadmap Down to 1.4nm in 2027

With the company’s success of bringing the latest 3nm process technology to mass production, Samsung will be further enhancing gate-all-around (GAA) based technology and plans to introduce the 2nm process in 2025 and 1.4nm process in 2027.

While pioneering process technologies, Samsung is also accelerating the development of 2.5D/3D heterogeneous integration packaging technology to provide a total system solution in foundry services.

Through continuous innovation, its 3D packaging X-Cube with micro-bump interconnection will be ready for mass production in 2024, and bump-less X-Cube will be available in 2026.

Proportion of HPC, Automotive and 5G to be More than 50% by 2027

Samsung actively plans to target high-performance and low-power semiconductor markets such as HPC, automotive, 5G and the Internet of Things (IoT).

To better meet customers’ needs, customized and tailored process nodes were introduced during this year’s Foundry Forum. Samsung will enhance its GAA-based 3nm process support for HPC and mobile, while further diversifying the 4nm process specialized for HPC and automotive applications.

For automotive customers specifically, Samsung is currently providing embedded non-volatile memory (eNVM) solutions based on 28nm technology. In order to support automotive-grade reliability, the company plans to further expand process nodes by launching 14nm eNVM solutions in 2024 and adding 8nm eNVM in the future. Samsung has been mass producing 8nm RF following 14nm RF, and 5nm RF is currently in development.

‘Shell-First’ Operation Strategy to Respond to Customer Needs in a Timely Manner

Samsung plans to expand its production capacity for the advanced nodes by more than three times by 2027 compared to this year.

Including the new fab under construction in Taylor, Texas, Samsung’s foundry manufacturing lines are currently in five locations: Giheung, Hwaseong, and Pyeongtaek in Korea; and Austin and Taylor in the United States.

At the event, Samsung detailed its ‘Shell-First’ strategy for capacity investment, building cleanrooms first irrespective of market conditions. With cleanrooms readily available, fab equipment can be installed later and set up flexibly as needed in line with future demand. Through the new investment strategy, Samsung will be able to better respond to customers’ demands.

Investment plans in a new ‘Shell-First’ manufacturing line in Taylor, following the first line announced last year, as well as potential expansion of Samsung’s global semiconductor production network were also introduced.

Expanding the SAFE ecosystem to strengthen customized services

Following the ‘Samsung Foundry Forum,’ Samsung will hold the ‘SAFE Forum’ (Samsung Advanced Foundry Ecosystem) on October 4th. New foundry technologies and strategies with ecosystem partners will be introduced encompassing areas such as Electronic Design Automation (EDA), IP, Outsourced Semiconductor Assembly and Test (OSAT), Design Solution Partner (DSP) and the Cloud.

In addition to 70 partner presentations, Samsung Design Platform team leaders will introduce the possibility of applying Samsung’s processes such as Design Technology Co-Optimization for GAA and 2.5D/3DIC.

As of 2022, Samsung provides more than 4,000 IPs with 56 partners, and is also cooperating with nine and 22 partners in the design solution and EDA, respectively. It also offers cloud services with nine partners and packaging services with 10 partners.

Along with its ecosystem partners, Samsung provides integrated services that support solutions from IC design to 2.5D/3D packages.

Through its robust SAFE ecosystem, Samsung plans to identify new fabless customers by strengthening customized services with improved performance, rapid delivery and price competitiveness, while actively attracting new customers such as hyperscalers and start-ups.

Starting in the United States (San Jose) on October 3rd, the ‘Samsung Foundry Forum’ will be sequentially held in Europe (Munich, Germany) on the 7th, Japan (Tokyo) on the 18th, and Korea (Seoul) on the 20th, through which customized solutions for each region will be introduced. A recording of the event will be available online from the 21st for those who were unable to attend in person.

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions. For the latest news, please visit the Samsung Newsroom at news.samsung.com.

Source: Samsung Electronics Co., Ltd.

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

The drumbeat around development of quantum computing continues to grow in mainstream media, as evidenced by a report in today’s Wall Street Journal (China Seeks a Quantum Leap in Computing). While timelines for practic Read more…

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semiconductor research and development. The effort, called the Read more…

In June 2020, the NSF awarded the National Center for Supercomputing Applications (NCSA) $10 million for its post-Blue Waters “Delta” supercomputer. Now, that funding has come to fruition: NCSA has announced that Del Read more…

For the better part of a century, General Motors (GM) was the biggest automaker in the world. Now, amid a paradigm shift toward smarter, electrified vehicles, the leading American automaker is working to meet the moment Read more…

Ten categories feature Amazon Web Services (AWS) in the 2022 HPCwire Readers’ Choice Awards. Read more…

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Last week the Quantum Economic Development Consortium (QED-C) released a new report – Public-Private Partnerships in Quantum Computing – that calls for increased government-commercial collaboration, broadly describes Read more…

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

For the better part of a century, General Motors (GM) was the biggest automaker in the world. Now, amid a paradigm shift toward smarter, electrified vehicles, t Read more…

Last week the Quantum Economic Development Consortium (QED-C) released a new report – Public-Private Partnerships in Quantum Computing – that calls for incr Read more…

Intel's engineering roots saw a revival at this week's Innovation, with attendees recalling the show’s resemblance to Intel Developer Forum, the company's ann Read more…

Over the past five years, Intel has been iterating on its neuromorphic chips and systems, aiming to create devices (and software for those devices) that closely Read more…

The King Abdullah University of Science and Technology (KAUST) in Saudi Arabia has announced that HPE has won the bid to build the Shaheen III supercomputer. Sh Read more…

Intel shared its latest roadmap of programmable chips, and doesn't want to dig itself into a hole by following AMD's strategy in the area.  "We're thankfully not matching their strategy," said Shannon Poulin, corporate vice president for the datacenter and AI group at Intel, in response to a question posed by HPCwire during a press briefing. The updated roadmap pieces together Intel's strategy for FPGAs... Read more…

Intel has had trouble getting its chips in the hands of customers on time, but is providing the next best thing – to try out those chips in the cloud. Delayed chips such as Sapphire Rapids server processors and Habana Gaudi 2 AI chip will be available on a platform called the Intel Developer Cloud, which was announced at the Intel Innovation event being held in San Jose, California. Read more…

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

There’s a growing interest among silicon providers backing RISC-V to introduce 48-bit computing in custom chips to meet their specific requirements. The 48-bit long instructions focus is more as a middle ground between 32-bit and 64-bit, which has largely been the focus of chips and instruction sets until now. Read more…

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

© 2022 HPCwire. All Rights Reserved. A Tabor Communications Publication

HPCwire is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.

Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications, Inc. is prohibited.